【摘要】针对项目执行过程中由于活动拖期导致基准调度计划不断变更的问题,从资源分配的角度构建基于资源流网络优化的鲁棒性调度计划。首先设计拖期惩罚成本指标来衡量调度计划的鲁棒性,并构建以拖期惩罚成本最小化为目标的资源流网络优化动态模型。针对该模型设计MTPC资源流网络优化算法,该算法以活动为基准,采用拖期惩罚成本最小的资源分配方案实现资源在活动节点之间的有效流动,提升调度计划的鲁棒性。最后,为验证MTPC优化算法的有效性和可行性,通过采用蒙特卡罗模拟仿真实验将MTPC优化算法与RRAS,Min-EA和MABO等3种资源分配算法进行对比分析。实验结果表明:MTPC算法在调度计划的鲁棒性,资源分配方案的稳定性以及算法的时间效率上都优于其他3种算法。MTPC算法不仅能快速有效地完成资源配置,还能通过降低活动的拖期风险提升调度计划的鲁棒性,这可以帮助项目管理者构建抗干扰能力较强的基准调度计划。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《华侨大学学报(哲学社会科学版)》 2015-07-07
《数字家庭》 2015-07-06
《广州大学学报(社会科学版)》 2015-07-06
《重庆高教研究》 2015-06-30
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点